
D
at

ab
as

e
Se

cu
ri

ty
–

M
as

ki
ng

www.bluecoreresearch.com
info@bluecoreresearch.com

Static and Dynamic Data Masking

Whitepaper

FEBRUARY 22, 2022



Page 1 Static and Dynamic Data Masking Blue Core Research

Introduction

Data Masking has been a hot topic in recent years, but
many don’t fully understand it. This paper is about static
and dynamic data masking, the benefits and limitation,
alternatives, and what to expect from the technologies.

Static Data Masking

Static data masking is a way to secure non-production
databases. When talking about non-production databases, we
refer to databases like test and development that contain
sensitive production data. Many customers use production
data in non-production systems to improve software quality
and shorten development cycles.

Using production data earlier in the development cycles
helps improve software quality by performing more tests
with the production data. It also helps detect flaws earlier in
the development cycles. That means quicker repairs, thereby
reducing the total time to deployment.

Threat vectors

Storing sensitive data outside the protected production
environment increases the exposure of the data significantly.
The increased exposure is in three areas:
▷ QA & Development personnel often have unrestricted

access to the non-production databases that contain
sensitive information. By connecting to the database and
running queries, they can extract any sensitive information.

▷ QA & Development personnel have unrestricted access to
the application running on the non-production databases.
Using the application, they can access any sensitive data.

▷ Non-production systems, both database and application
servers, are not well secured. That increases the likelihood
of exposure to unauthorized personnel that gained access to
these systems.

Threats

The threat landscape of non-production systems is massive.
From internal abuse of privilege to external hacks -
non-production systems are poorly secured.

Non-production systems threats include:
▷ A large number of individuals with unrestricted access.
▷ Individuals without security clearance to sensitive data.
▷ Poorly managed authorization controls giving access to

many unknown individuals.
▷ Poorly managed access control, patches, vulnerabilities,

etc., giving potential access to any intruder at the operating
system, application, and database levels.

▷ Poorly managed physical security giving potential access to
the hardware and storage that contain the data. Sometimes,
even portable hardware is used, such as laptops and external
storage.

▷ There are no significant security measures like firewalls,
auditing, etc.

Objectives
Static data masking aims to remove sensitive information

from non-production systems. That is the simplest and
cheapest way to eliminate the risk.

Static data masking replaces sensitive data with harmless
fake data. The idea is that if non-production systems don’t
contain sensitive data, there is no risk.

However, the masked must be usable for testing purposes
and allow testing quality equal to or better than what is
achievable with the sensitive data.

For the fake masked data to be considered good, it must
satisfy three basic conditions:
▷ The masking process removed the sensitive information.

There should be no way to discover the original data from
the masked data.

▷ The masked data must be valid and consistent. Fields
that have special rules or checksums must maintain those.
Masked primary keys have to be unique. Masked foreign
keys (or equivalent references) must match. City, state, and
zip code must be consistent, etc.

▷ The masked data must retain or improve test quality.
Among other things, it means that the masked data should
”feel” real. For example, it should retain data frequency like
the ratio between male and female. It should continue to use
the same patterns. If there were valid and invalid values,
they should continue to exist. And more.

Challenges
Static data masking should enable you to create ”good

fakes”. Giving you the tools that can analyze and manipulate
the data to create a realistic mask. That includes, for example:
▷ Analyze column patterns to ensure the masked data

contains all the patterns that exist in the original data.
▷ Analyze value distribution to maintain, for example, the

male to female ratio.
▷ Ensure generated primary keys are unique.
▷ Maintain correct mapping between primary keys and

referencing columns such as foreign keys.

Strategies

There are four primary strategies for static data masking:
▷ Value manipulation - this strategy changes each field

independently. The masked data is a function applied to
the original data. Depending on the masking function, the
masked data can retain some aspects of the original data.
This simple form of masking is often effective, though it
has a higher potential of exposing sensitive information. In
some cases, for example, when applied to names, it will
produce data that is not realistic.

▷ Data generation - this strategy creates new data unrelated
to the original sensitive information. While the masked
information won’t disclose anything about the original data,
it is also completely unrelated. Therefore, if the masked
columns are part of the test, testing quality will be poor.

www.BlueCoreResearch.com Static and Dynamic Data Masking Page 1



Page 2 Static and Dynamic Data Masking Blue Core Research

▷ Automatic profiling - this strategy includes three steps:
analyzing the original data, creating a data profile, and
generating data based on that profile. This strategy is a type
of data generation based on the original data. It provides
high-quality realistic data that does not expose the original
data and even breaks row association.

▷ Custom profiles - this is an advanced form of automatic
profiling that allows you to customize the data profile. It
lets you create data that fit particular scenarios, resembles
past data profiles, or is similar to other datasets. It is also
an effective means of creating datasets of any size - both
bigger and smaller.

Since each approach has different benefits and drawbacks,
a good data masking solution will offer all these strategies
allowing you to use the most appropriate method for each
situation.

Implementing strategies in different types of data requires
different algorithms. For example, value manipulation on
textual data requires character substitution algorithms, while
manipulating numerical quantities is done with noise infusion
- adding random noise to each number.

Another example is profiling: limited data sets such as
gender or country require a different algorithm than patterns
such as phone numbers or credit cards.

Special types of data can also require special algorithms.
For example, date or time in database format, parsing a date
or a time from text fields, LOBs, and more.

Finally, it’s important to note the quality of the algorithms.
For example, a popular algorithm for masking primary and
foreign keys is predictive masking by fixing the seed of
the random numbers. However, in real-world scenarios, that
method breaks. That’s why Core Audit uses dictionaries to
ensure consistency. See a separate whitepaper on consistency
methods.

Dynamic Data Masking

Dynamic data masking is for securing production
databases. Don’t be confused by the similar name - dynamic
data masking addresses entirely different threats with vastly
different objectives and solutions.

Unlike the simple solution of static data masking for
non-production, you cannot remove sensitive data from
production. Therefore, you must secure the data in production.

Threats

The application and other database users must use
production data, including sensitive information, for the
business to function. That is unlike non-production, where the
mere existence of sensitive data poses an unnecessary risk.

Dynamic data masking could, in theory, be used to mask
data in the application. However, that is only possible in
reality when the database is aware of the application’s
end-user. For example, when the application doesn’t use
an application server or the end-user authenticates directly
against the database.

In most environments, the database cannot distinguish
between application SQL that requires mask data and one
that requires unmasked data. Therefore, masking data in the
application is almost always done by the application.

As a result, dynamic masking is only for individuals with
direct SQL access to the database. These include DBAs,
analysts, developers with production access, and more.

However, in most cases, these users should not have
access to sensitive data. Analysts, developers, and other
non-privileged personnel can have only limited permissions
preventing them from accessing sensitive columns. You can
achieve that using standard database permissions.

You can block DBAs and privileged users from accessing
sensitive data using solutions like Core Audit. That is not
part of built-in database security but does not require dynamic
masking.

Therefore, dynamic masking is only for analysts,
developers, or DBAs who need to see a masked version
of the data and not be blocked altogether.

Objectives
Unlike static data masking, dynamic masking doesn’t aim

to create realistic data. It only aims to prevent certain accounts
from viewing sensitive information.

Due to its real-time nature, dynamic masking can only
perform value manipulation by applying a function to
sensitive columns. Dynamic masking doesn’t have the luxury
of time and resources to analyze the entire column data and
produce good fakes. Usually, that is sufficient for hiding parts
of the data from the relevant users.

However, dynamic masking is useless for testing purposes
since the masked data is not realistic, will not allow for a
high-quality test, and in some cases produce invalid data that
will not allow the test to run at all.

As mentioned in the alternatives below, dynamic masking
is particularly useful when users need to regularly view part
of the sensitive information but not all of it. There are simpler
and more effective alternatives for most other situations.

Alternatives
Production databases protection includes a vast array of

detective and preventive measures. While this paper will not
go into great detail, here are some examples:
▷ Database permissions - all databases include table and

column level permissions able to restrict access for
non-privileged accounts. Only administrators can bypass
these restrictions, and they are simple and effective in
blocking all non-privileged accounts.

▷ SQL blocking - when administrators should not view
sensitive information, blocking the activity is a much better
approach than masking part of it.

▷ Separation of duties - if there’s a need for temporary access
to sensitive information, using an Amnesty policy is the
best approach.

▷ Auditing reports - these can show, among other things, who
accessed sensitive information. That is often an effective

www.BlueCoreResearch.com Static and Dynamic Data Masking Page 2



Page 3 Static and Dynamic Data Masking Blue Core Research

strategy for deterring users and administrators from abusing
their privileges.

▷ Anomaly analysis & alerts - by analyzing database activity
profiles, it is possible to detect, for example, unusual access
to sensitive information.

▷ Proactive forensic - giving security personnel visibility
into who does what in the database opens a myriad of
investigation and analyses options.

As mentioned above, there are, often, easier and more
effective means of protecting production data than using
dynamic masking. A good database security solution will
offer all these options giving you the flexibility to use the right
strategy for each particular situation.

Technologies & Challenges
Dynamic masking targets individuals with direct SQL

access. Because these individuals are well-versed in databases
and SQL, a dynamic masking solution shouldn’t have
limitations that these individuals can easily bypass.

The core technology in dynamic data is SQL rewrite. For
example, by rewriting this SQL:

SELECT phone FROM employees;

Into this version that returns a masked phone number:

SELECT mask_phone(phone) FROM employees;

Depending on the core technology of the solution, different
solutions implement the rewrite in different locations:
▷ Inside the database. Many databases include native

capabilities for dynamic masking like Oracle Data
Reduction and SQL Server Dynamic Data Masking.

▷ On the network before the query enters the database.
▷ Inside the database engine using a solution like Core Audit.

Database Native Dynamic Masking
Native dynamic masking is the most ”full proof” as it’s

built by the database vendor directly into the database’s SQL
parser. However, it presents with two inherent flaws:
▷ Masking functions - native dynamic masking usually offer

a limited set of masking functions. Those may not satisfy
your requirements.

▷ DBAs - native dynamic masking is always administered by
DBAs. As such, it is ineffective in controlling DBA activity
- one of the reasons for using it in the first place.

Network-based Dynamic Masking
Network-based dynamic masking has significant

limitations inherent in the technology - what the tool
can see on the network.

The most crippling limitation is that these tools cannot
see encrypted network activity. That is a significant problem

because individuals with direct SQL access can always
connect with encryption.

Another limitation is that these tools can only see the
messages sent to the database and not the internal activity in
the database.

For example:

declare
@s1 nvarchar(100)=’pme morf enohp tceles’,
@s2 nvarchar(100)=’’;
while len(@s1)>0
begin

set @s2 = substring(@s1,1,1) + @s2;
set @s1 = substring(@s1,2,len(@s1)-1);

end
exec sp_executesql @s2

This SQL Server block reverses the string and executes it.
When that block runs, it will execute this SQL:

select phone from emp

By looking at the network traffic alone, it’s impossible to
know that the block will read phone numbers from the emp
table, let alone rewrite that block to return masked data.

That is one of an infinite number of examples for the
limitations in network-based database security in general and
dynamic masking in particular.

Dynamic Masking in the Database Engine
The Core Audit Full Capture technology works directly

with the database engine and can rewrite the SQL during the
database’s SQL parse.

Network encryption or dynamic SQLs, like the examples
above, cannot bypass this technology. This technology is also
impervious to DBAs and privileged users, unlike the native
database capabilities.

While this option is the most air-tight dynamic masking
solution, it is only one of a myriad of capabilities offered
by Core Audit that are often more appropriate than dynamic
masking.

Final thoughts
While static data masking is a fundamental measure for

protecting non-production databases, dynamic masking is one
of the least significant capabilities for protecting production
systems.

The confusing name and significant marketing efforts
brought dynamic masking into the forefront of database
security. However, there are far more critical security
measures to apply to production databases.

www.BlueCoreResearch.com Static and Dynamic Data Masking Page 3


	Introduction
	Static Data Masking
	Threat vectors
	Threats
	Objectives
	Challenges
	Strategies

	Dynamic Data Masking
	Threats
	Objectives
	Alternatives
	Technologies & Challenges

	Final thoughts

